

University of Calcutta

Mysteries of DRA Modes Unresolved Issues for the Future

Debatosh Guha Institute of Radio Physics and Electronics University of Calcutta, India

University College of Science and Technology 1914-2014

On the World Map

Our Teachers

Our Heritage

1895 Demonstrated a mechanical operation using WIRELESS at 2.5 GHz

transmitting Horn

receiving Horn

Bose's Pyramidal Horn

Rest is History

Today's Presentation

Unknown Mode in Known DRA

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. AP-31, NO. 3, MAY 1983

The Resonant Cylindrical Dielectric Cavity Antenna

STUART A. LONG, SENIOR MEMBER, IEEE, MARK W. MCALLISTER, AND LIANG C. SHEN, SENIOR MEMBER, IEEE

THE RECTANGULAR DIELECTRIC RESONATOR ANTENNA

Mark W. McAllister, Stuart A. Long, & George L. Conway Department of Electrical Engineering University of Houston Houston, Texas 77004

CH1860-6/83/0000-0696\$01.00 @ 1983 IEEE

CIT INNE

Cylindrical-DRA

 $\text{HEM}_{11\delta}$

Mode Nomenclature

m: number of <u>full-period</u> variations of fields along the azimuth
n: <u>half-wave</u> variation along radius (field between center and the periphery)
'p+δ': <u>half-wave</u> variation along z-axis of the cylinder

HEM $_{11\delta}$

Isolated Resonator

$TM_{01\delta}$

Theoretical HEM ₁₂₀ Mode

///////////

111111

Isolated Resonator

Does it Radiate?

111111

It should

Mode	f (GHz) res	Q
TE _{01 6}	4.829	45.8
τм _{01 δ}	7.524	76.8
HEM11 6	6.333	30.7
HEM125	6.638	52.1
нем _{21 б}	7.752	327.1

Boundary condition does not allow any ground plane

Address the Challange

Boundary Condition demands Horizontal current in place metal New approach to realize a current ribbon ??

Non-resonant Microstrip Patch working as a current ribbon

grounded substrate

circular patch

Probe current

First Examination

experiments

DRA: $\varepsilon_{r,d} = 10$, a = 10 mm, h = 10 mm. NMP r = 5 mm, $\varepsilon_{r,s} = 2.33$, t=1.575mm;

Radiations

after 3 decades

f = 7.4 GHz

D. Guha, et al. IEEE AP Transactions, January, 2012

Design Limitations?

Any limitation in DRA diameter?

Any limitation in DRA height?

Any limitation imposed by the DRA material?

D. Guha, et al. IEEE AP Mag. August 2014

zinc tungstate composite

Unknown Mysteries

Any other Technique?

Fully planar should be most advantageous; should it be like this?

No, not so straight forward.

Mysteries lie in Current Ribbon with matching; solution needs a different approach.

D. Guha, et al. IEEE AP-S Memphis, 2014

Yet any Other Technique?

YES!

Much Easier and Robust Technique has been developed recently and reported

Role of Embedded Truough

ground plane with trough

The Results

Yet Any Other?

Definitely YES

An Open Book to YOU

Two Different Techniques have been Explored Recently

1

Composite Aperture – to realize equivalent Magnetic & Electric Dipoles as new Feed 2

Under investigation.....

Why?

- Aperture introduces *no metal.*
- Favors required boundary condition for $HEM_{12\delta}$ mode.
- Suitable for $HEM_{11\delta}$ mode too.

Aperture-Feed Explored

$HEM_{12\delta} + HEM_{11\delta}$

Impedance vs Feed

Characterize the Feed

What about Dominant Mode?

Select the Optimum One

 $\text{HEM}_{12\delta}$

 $\text{HEM}_{11\delta}$

Radiation Patterns

Optimized Aperture

Optimized Feed Line

Optimum Parameters

Frequency (f)	Wavelength (λ)	
3.85GHz(f ₁)	78mm (λ ₁)	
7.35GHz (f ₂)	41mm(λ ₂)	

Table of Parameters

Parameters	Optimized Value	In Terms of λ
	(mm)	
а	10	0.13λ ₁ (0.24λ ₂)
b	2	$0.03\lambda_{1}(0.05\lambda_{2})$
W	3.6	0.05λ ₁ (0.09λ ₂)
I	39	$0.5\lambda_{1}(0.95\lambda_{2})$
р	9	$0.12\lambda_1(0.22\lambda_2)$
q	3.95	$0.05\lambda_{1}(0.1\lambda_{2})$
K	11.5	0.15λ ₁ (0.28λ ₂)

The Prototype

Viewed from Feed-line side

Measured Results

-

Measured Radiations

Interesting Observation

Air-film Thickness~ (0.02-0.04)mm

Closely Follow

 $HEM_{12\delta}$

Location on the spectrum

- •New feed for CDRA with $HEM_{11\delta}$ & $HEM_{12\delta}$ modes simultaneously.
- Both the modes with comparable Bandwidth, Gain and Patterns.
- •Dual mode dual-band antenna with identical radiations
- •Unavoidable air-gap is a new finding, which adds a new feature.

Unconventional Pattern providing larger Beamwidth

Known Modes in Unknown Structures

$TM_{01\delta}\,mode$

after a decade

E Field[V/n] 3.88886.083 2.0125c+000 2.6250c+003 2.4375e+003 2.2500e+003 2.0625e+003 1.8750e+003 1.6875e+003 1.5000+003 1.3125e+003 1.1250e+003 9.3758c+082 7.5000c+002 5.6258c+082 3.7500c+002 1.8750±+002 0.0000±+000

Mongia et al *Elect. Lett.* 29(17) 1530-1531, 1993.

Marriage of two Monopoles

Lapierre, Antar, Ittipiboon, Petosa, IEEE MWCL, Jan. 2005.

Ittipiboon, Petosa, Thirakoune, Bandwidth enhancement of a monopole using dielectric antenna resonator loading, ANTEM, Canada, Aug. 2002

US patent no.6940463 Sept. 2005

Problem bestowed upon

Mystery of BW? Inside

0

the Modes

Design Becomes Easy

<u>Guha</u>, Antar, Ittipiboon, Petosa, Lee, IEEE AWPL, vol. 5, 2006.

a) *Design Frequency*

first resonances: f_1 , third resonances : f_3 are related as $f_H \approx 2.5 f_L$.

b) *Monopole Parameters :* Length : $I = \lambda_L/4$ Radius : $s \ge r \ge s/2$

(c) **DRA Parameters :**

Spacing *s* is important for second and third resonances and it is optimum when $0.016 \lambda_{L} \ge s \ge 0.013 \lambda_{L}$ and $b = r + s, \ a = b/0.3,$ $0.5 \ l \ge h \ge 0.4l$. Finally, ε_{r} value is extracted from the TM₀₁ resonance formula

Paper design as per Design Guideline

Improved Bandwidth?

Definitely Yes! If we can add identical mode(s)

How ? Adding resonators? or Resonances?

Let's examine the primary resonator if it can help!

Calibration Trace

How to accommodate that mode?

By shaping the DRA

What's New?

DRR radius = 4.2 mm DRR height = 4.4 mm inner cut rad=1.3 mm ϵ_r =10 MP height=10 mm MP rad=0.65 mm

Radiations over the Band

The Physical Insight

UWB ?

and wider Bandwidth? D. Guna, et al, <u>IEEE AWPL</u>, vol. 5, 2006. Yes, Possible D. Guha, B. Gupta and Y. M. M. Antar, <u>IEEE AWPL</u>, vol. 8, 2009

Composite DRA Structure

Monopole-like Pattern

D. Guha and Y. Antar: IEEE AP Transactions Oct. 2006 D. Guha and Y. Antar: IEEE AP Transactions, Dec. 2006

New Approach

New Configurations

The Resonances

Half of a Hemisphere

Half of a Hemisphere

Electromagnetically coupled two Half- Hemispherical DRAs

Composite DRA

Radiation Patterns

Quarter and Composite

Introduces Modal Symmetry

Are they Different Modes ?

Perfect Symmetry

Radiation Patterns

Compare

DRA is still an Open Book; Not event its 30% Explored. DRA researchers should have more insight and serious attention Resonator, Material, and Antenna need to be addressed together Next Breakthrough Awaiting New Dielectric Materials

I hope to come with new information for you shortly :

Mode filtering technique as a potential tool for DRA engineers.

Newer Feed to resolve major DRA issues in integrated platform - which is supposed to be very hard task.

Related Books

Dielectric Resonator Antennas: K. M. Luk & K. W. Leung

2002 Research Studies Press

Dielectric Resonator Antenna Handbook: A. Petosa Antenna Engineering Handbook: J. L. Volakis Ed. Dielectric Materials for Wireless Comm: M. T. Sebastian

55

Dielectric Materials for Wireless Communication

2008 Elsevier

2007Artech House

2007 McGraw Hill

Behind this small contribution

